Historia
En el Antiguo Egipto se calculaba utilizando fracciones cuyos denominadores son enteros positivos; son las primeras fracciones utilizadas para representar las «partes de un entero», por medio del concepto de recíproco de un número entero. Esto equivale a considerar fracciones como: un medio, un tercio, un cuarto, etc., de ahí que las sumas de fracciones unitarias se conozcan como fracción egipcia. Se puede demostrar además, que cualquier número racional positivo se puede escribir como fracción egipcia. El jeroglífico de una boca abierta denotaba la barra de fracción (/), y un arte numérico escrito debajo de la "boca abierta", denotaba el denominador de la fracción.
Los babilonios utilizaban fracciones cuyo denominador era una potencia de 60. El sistema chino de numeración con varillas permitía la representación de fracciones. Los griegos y romanos usaron también las fracciones unitarias, cuya utilización persistió hasta la época medieval. Diofanto de Alejandría (siglo IV) escribía y utilizaba fracciones. Posteriormente, se introdujo la «raya horizontal» de separación entre numerador y denominador, y el numerador dejó de restringirse al número uno solamente, dando origen a las llamadas fracciones vulgares o comunes. Finalmente, se introducen las «fracciones decimales», en donde el denominador se escribe como una potencia de diez.
Se cree que las fracciones decimales eran conocidas por los matemáticos chinos en el siglo I, y que de ahí se extendió su uso a medio Oriente y Europa. J. Lennart Berggren nota que un sistema posicional con fracciones decimales fue utilizado por el matemático árabe Abu'l-Hasan al-Uqlidisi en el siglo X.
Khwarizmi introduce las fracciones en los países islámicos en el siglo IX. La forma de representar las fracciones provenía de la representación tradicional china, con el numerador situado sobre el denominador, pero sin barra separadora. Esta forma de escritura de las fracciones con el numerador arriba y el denominador abajo, sin barra horizontal, fue utilizada también en el siglo X por Abu'l-Hasan al-Uqlidisi y en el siglo XV por Jamshīd al-Kāshī en su trabajo La llave de la aritmética.
Leonardo de Pisa (Fibonaccci) en su Liber Abaci (Libro del Ábaco), escrito en 1202, expone una teoría de los números fraccionarios. Las fracciones se presentan como fracciones egipcias, es decir, como suma de fracciones con numeradores unitarios y denominadores no repetidos. Además, describe su uso y las desarrolla dentro del marco moderno de las series matemáticas.
El uso moderno fue definitivamente introducido por Simon Stevin en el siglo xvi.
Cronología:
1800 a. C. Registro de uso de fracciones por el Imperio Babilónico.
1650 a.C. Sistema de fracciones egipcias.
500-600 d.C. Aryabhata y Brahmagupta desarrollan las fracciones unitarias.
1585 Teoría sobre las fracciones decimales de Simon Stevin.
1700 Uso generalizado de la línea fraccionaria (barra horizontal u oblicua).
¿Qué es una fracción ?
En matemáticas, una fracción, número fraccionario, (del vocablo latín frāctus, fractĭo -ōnis, roto, o quebrado) es la expresión de una cantidad dividida entre otra cantidad; es decir que representa un cociente no efectuado de números. Por razones históricas también se les llama fracción común, fracción vulgar o fracción decimal. Las fracciones comunes se componen de: numerador, denominador y línea divisora entre ambos (barra horizontal u oblicua). En una fracción común a/b el denominador "b" expresa la cantidad de partes iguales que representan la unidad, y el numerador "a" indica cuántas de ellas se toman.
Por ejemplo: 3/4, que se lee como tres cuartos, señala tres partes sobre cuatro totales, y también se puede expresar como el 75%.
El conjunto matemático que contiene a las fracciones de la forma a/b, donde a y b son números enteros y b≠0 es el conjunto de los números racionales, denotado como ℚ.
Las fracciones están compuestas por numeradores y denominadores. En 1/2, 1 es el numerador y 2 es el denominador. Estos componentes siempre son números enteros; por lo tanto, las fracciones pueden encuadrarse en el grupo de los números racionales.
De acuerdo al tipo de vínculo que se establezca entre el numerador y el denominador, las fracciones pueden clasificarse como:
-Fracciones propias (si el denominador es más grande respecto al numerador),
-Fracciones reducibles(cuando el numerador y el denominador no son primos entre sí, una particularidad que permite que la estructura pueda simplificarse) o
-Fracciones mixtas tienen un aspecto particular, ya que delante del numerador y el denominador se escribe un número entero, generalmente de mayor tamaño (en lo que se refiere a su tipografía) y ubicado en el centro vertical. Este valor indica qué cantidad de veces se completa el denominador, hecho que no sucede en el resto de las fracciones. Un ejemplo sería 4 1/3, lo que significa que se tienen 4 unidades (cuatro veces tres tercios) y un tercio.
*Se conoce como fracciones homogéneas a aquellas que comparten el denominador (5/8 y 3/8). Las fracciones heterogéneas, en cambio, tienen denominadores distintos (3/5 y 7/9).
- Fracción decimal es una fracción en la cual el denominador (el número de abajo) es una potencia de diez (como 10, 100, 1000, etc.). Podemos escribir fracciones decimales con un punto decimal (y sin denominador). Esto puede facilitar mucho los cálculos de operaciones como suma, y multiplicación en fracciones.
-La fracción generatriz de un número decimal es una fracción cuyo resultado es ese número.
a) ejemplo para periódicas mixtas
b) ejemplo para periódicas puras
c) ejemplo para números con decimales exactos
OPERACIONES CON FRACCIONES
Multiplicación de fracciones
reducimos los números mixtos a fracciones
multiplicacion de numeros enteros, mixtos
Enlaces recomendados para practicar :
https://www.matesfacil.com/ESO/fracciones/mixtos/fraccion-mixta-numero-mixto-suma-producto-definicion-ejemplos-ejercicios-interactivos-secundaria-test.html
https://www.vitutor.com/di/r/a_7.html
Clasificación número decimal con ejemplos.
Fracción generatriz de un decimal periódico










































No hay comentarios.:
Publicar un comentario